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We present a method for setting release times for jobs with due dates in a stochastic
production flow line for which the sequence of jobs has been determined. Unlike other
approaches to this problem, ours considers a transient situation. Thus, the flow line will
typically contain work in process (WIP), that is, jobs that have been previously released to the
system.

Our goal is to develop a job release schedule that not only minimizes tardiness but also
maximizes flexibility. The philosophy can be characterized as one that seeks to “release as late
as possible, but no later!”

Our methodology is based on Monte Carlo simulation and consequent optimization by a
method that became known as “stochastic counterpart” or “sample path” simulation-based
optimization techniques. We use this method to minimize an expected value objective
function that contains terms for tardiness and flow time “costs.” We include a discussion of
how the cost parameters of this objective function can be obtained by considering a
“characteristic curve” for the system. We also discuss means for obtaining sensitivity analysis
with respect to due dates and service times distributions parameters. We conclude with a
numerical example.
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1. Introduction
Sales of Manufacturing Resources Planning (MRP II)
and Enterprise Resource Planning (ERP) systems have
climbed steadily in recent years. In 1989, MRP II sales
accounted for almost a third of the total software
market in the United States, with revenue of $1.2
billion (IE 1991). Last year, this total was exceeded by
one company, SAP of Germany, with a total revenue
of $1.8 billion ($367 million in the United States).
Unfortunately, at the heart of most of these systems
is a scheduling module that relies on the same basic
assumption of the original MRP systems designed
almost 30 years ago—that of fixed planned lead times
that depend only on the part being produced. Of
course, as has been widely noted by scholars and
practitioners alike, since capacity is finite, flow times
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depend on congestion. Because manufacturers typi-
cally desire high utilization of their resources, conges-
tion can be high, and hence planned lead times must
be long, leading to high inventory levels and sluggish
customer responsiveness.

Recognition of this flaw in MRP II and ERP systems
has triggered the recent flurry of development of
Advanced Planning Systems (APS). These systems use
finite capacity scheduling techniques that are based on
a wide array of models that try to determine appro-
priate start times and schedules for jobs in recognition
of capacity constraints. Growth in this area has been
even more phenomenal than that in ERP, with the
revenue of several APS vendors doubling every year
for the past two or three years.

What has made all this advancement possible is the
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development of what are called Manufacturing Exe-
cution Systems (MES). MES utilize emerging network-
ing technology to provide real time tracking of status
of manufacturing resources such as machines, labor,
and tooling along with work-in-process (WIP). Ide-
ally, an APS can download the current status of the
shop floor from the MES, get planned order releases
from the ERP system, and attempt to optimize the
schedule. Unfortunately, the integration has not been
so seamless, and the way APS, MES, and ERP systems
will be coordinated is still being worked out (Gumaer
1996).

The addition of MES and APS to MRP II to make a
truly comprehensive ERP systems has been a great
improvement over older incarnations of MRP. How-
ever, no ERP system to date explicitly considers sto-
chastic issues. Many allow for buffers either in the
form of inventory or lead time, but they do not offer
any suggestion as to how these buffers should be set.

This paper makes a step toward bridging this gap.
While we cannot, at this point, consider extremely
complex operations, we do examine a stochastic pro-
duction line having existing WIP and for which the
sequence but not the schedule of release of jobs is
known. An example of such a situation would be a
flow line in which the jobs all have roughly the same
process time but have different characteristics and due
dates (e.g., a flow line making circuit boards).

The model explicitly considers stochastic process
times as well as down times. Conceivably the model
could be used as an interface between the creation of the
MRP pool and the MES job release module to determine
exactly when jobs should be released. This would elim-
inate the need for a human planner to make such
decisions. Criteria for release include both WIP levels
and customer service (i.e., job tardiness). Parameters in
the model can be adjusted to trade off between these
competing desires. Finally, the model provides sensitiv-
ity analysis with respect to capacity and due dates. This
gives a planner information regarding the cause of
infeasibility of a given schedule.

2. Previous Work
Much of the work that has been done in this area has
been related to material requirements planning (MRP)
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systems (see Vollman et al. 1988 for a comprehensive
treatment of this subject). Under MRP the release
times are given by subtracting a planning lead time
from the due date of the job. This planning lead time
is a constant that is stored in the MRP database and
depends only on the part number.

The use of fixed lead times has led to large inven-
tories. Why? Because, as one production control man-
ager put it, “Customers can scream but inventory
can’t.” Longer planning lead times help to ensure that
jobs get finished in time, but they do so at the cost of
more inventory and sluggish customer responsive-
ness. Also, since the lead times are often longer than
what the customer will tolerate, forecasts must be
used. This can lead to even more inventory (forecast
high) and/or shortages (forecast too low).

To prevent excessive lead times, most MRP 1II sys-
tems provide two capacity checks: rough cut capacity
planning (RCCP) and capacity requirements planning
(CRP) along with an execution model known as In-
put/Output Control. RCCP provides a very rough
check of the master production schedule by compar-
ing demand against an aggregated load. CRP takes the
planned order releases from MRP and projects their
arrival throughout the plant. By adding these for all
the releases, one can create a load profile at each
process. However, CRP contains the same error as
MRP, but it does it more often. CRP assumes a
constant lead time at each process center rather than
for the entire routing. For a complete discussion of the
problems of MRP, RCCP, and CRP, see Hopp and
Spearman (1996, ch. 3 and 5).

Input/output control simply monitors WIP and
releases and alerts the planner whenever the WIP
levels have increased beyond a certain level. However,
this remedy is usually “too little, too late.” The poor
performance of MRP II systems was a large motiva-
tion for the rise in the use of so called Just-in-Time
(JIT) systems during the 1980s. Instead of controlling
releases via a master production schedule, JIT meth-
ods control WIP directly by either limiting it at each
station (e.g., kanban) or by limiting it on a routing
(e.g., CONWIP). It can be shown that controlling
releases and measuring WIP (a la MRP 1I) is always
less robust than controlling WIP and measuring
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output (a la kanban, CONWIP)—see Spearman and
Zazanis (1992). Of course, while both kanban and
CONWTIP do help to smooth releases, neither is explic-
itly linked to due dates. Thus, without intervention,
either system can sometimes pull jobs in too early and
other times release jobs too late.

Nevertheless, there has been a fair amount of re-
search in I/O Control and in setting lead times. Karni
(1982) studies the basic equations of a deterministic
I/O Control system and offers some insight into
setting MRP lead times. Graves (1986) describes a
stochastic model that allows flexible production rates
in order to keep WIP levels (and, equivalently, lead
times) small. Karmarkar (1987) describes a stochastic
model of a single station that considers setup times
and batch sizes in order to compute expected cycle
times. The application of this model in an actual cell is
described in Karmarkar et al. (1985).

Good surveys are provided by Baker, who discusses
requirements planning, and Karmarkar, who de-
scribes issues surrounding manufacturing lead times
(Graves et al. 1993, separate chapters).

Most of the papers dealing with setting release
times use steady state models. There is much less
literature dealing with transient systems. An excep-
tion is Saboo et al. (1989), who model the transient
flow of materials in a generalized flow line using a set
of recursive equations that involve the maximum of
the arrival time of a job and the finish time of the job
before it (similar to our model). Their performance
measures are the expected make-span, delay in
queues, station utilization, and lot tardiness. They
approximate the maximum of two random variables
with a bivariate normal and, consequently, require
that the processing times at the stations be normally
distributed. They state that approximation errors
grow with an increase in the number of jobs and/or an
increase in the number of stations. They also state that
their algorithm substantially underestimates the vari-
ance of the finish times in most cases and conjecture
that it is because they have ignored covariance effects.

Our model is similar to that used by Saboo et al.
(1989). However, we will not attempt to approximate
the maximum of two random variables. Instead, we
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will employ a rapid simulation methodology to com-
pute individual sample paths.

3. Description of the Model

We consider a single stage in a production system in
which there are K single-server stations and a set of |
jobs that must be processed sequentially by all stations
in a prescribed order. We assume that the processing
of job j on station k is a random variable whose
distribution is known, and that each station processes
its coming jobs on a first-come-first-serve basis, hold-
ing waiting jobs in a queue of infinite capacity. Each
job has a predetermined due date that should be met.
We are also interested in keeping the flow time (or
cycle time, as it is often referred to in industry and as
we will call it in the remainder of the paper) of each
job, which is given by the sum of the processing and
the queueing time of that job over all K stations, as
small as possible. Short cycle times are important
because:

1. They provide more rapid response to customers.

2. They reduce work in process (WIP).

3. They result in less scrap because there typically is
less time between defect creation and defect
detection.

Also, in many cases shorter cycle times provide
greater flexibility in manufacturing because raw ma-
terials (such as bar stock or blank wafers) do not
receive “personality” before processing begins. Simi-
larly, if the cycle times are short enough, an operation
can reduce inventories by building to order rather
than building to stock.

3.1. Example

The model described above would be appropriate for
any manufacturing situation involving a flow line
with jobs having due dates. One example is in a “raw
card” circuit board plant. This operation begins by
laminating one sheet of “pre-preg” between two
sheets of copper to form a “core blank.” The blank is
then etched with circuitry to form a “core” in a
sequence of operations called “core circuitize.” Often-
times, several cores are laminated together to form a
“composite” board. Composite boards are then drilled
and plated with copper to reconnect the various
circuits on different layers.
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Our model could be useful for releasing jobs in the
core circuitize portion of the line. Jobs are released
from an MRP system. Each job has, among other
things, a part number denoting the size of board and
the circuitry to be applied, a due date, and an order
quantity. In one plant where one of the authors
worked, there were over 5,000 varieties of circuit
boards. Large customer orders are split into several
jobs, each having the same part number and due date.
Most of the jobs have the same number of boards
limited by material handling devices (around 50
boards each). The core circuitize operation pulls core
blanks from a supply (there are relatively few of these)
along with a circuit master (there are many of these).

The first operation cleans the blank, followed by a
step that applies a photo-resist material. This is fol-
lowed by several mechanical operations that resize
and punch the board. At this point the circuit is
exposed onto the photo-resist material using ultravi-
olet light. This material is then developed in a chem-
ical bath to fix the image. After development, the
board is placed into another bath that etches off the
copper where there was no image, after which another
bath strips off any residual photo-resist material. The
last operation is one to “inspect and repair” any
“shorts” or “opens” that may have occurred.

Thus, the jobs are individual in that a different
circuit is etched onto different boards. However, the
process times are nearly identical for the jobs because
they all have the same number of boards. Since the
process times are nearly identical, the jobs are released
in earliest due date order to maximize customer
service.

One problem in this industry is that of long cycle
times. Demand is composed of “firm orders” for
specific customers, along with forecast demand. If
cycle times are short enough, most of the demand will
be in the form of firm orders. Obviously, less inven-
tory can be carried in such a system. One way to
reduce cycle times is to release jobs as late as possible.
Before a blank is circuitized it can be used for up to
1000 different part numbers. However, once it has
been exposed, it is committed to a specific part num-
ber. Hence the plant will keep a large stock of sheet
copper and pre-preg but will attempt to keep WIP
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levels low. Thus the proposed model is perfectly
suited for keeping cycle times short while meeting due
dates.

3.2. Notation
We use the following notations and terminology
throughout the paper. Forajobj, (j =1,...,]) and
a station k, (k = 1,..., K) we denote by: S;; the
service time of processing job j on station k, C,; the
completion time, i.e., the time job j finishes its service
at station k, d; due date of job j, r; the release time of
jobj, Lj and L} the penalty cost for tardiness and the
cost of holding job j in the factory per unit of time,
respectively. We discuss how we obtain these costs
below. By S := (544, ..., Sxj) we denote the vector of
service times, which is assumed to be random with a
known distribution, and by r := (4, ..., r;) the vector
of release times, which are viewed as the decision
variables to be determined. Note that Cy; can be
viewed as a total completion time of job j in the queue
and that each C;; is a function of 5, and of 7, and hence
is random.

The cost function, for processing | jobs, can be
written then in the form

J
Z(r, S, d) = 2 {Li[Cx—d]" + Li(Cx; Od) — 11},
j=1

(3.1)

where a O b denotes the maximum of two numbers a
and b, and a” := a 00. Our objective is to minimize
the expected value of the cost function subject to the
order constraints 0 = r; = --- = r. That is,

min{g(r, d) := E{Z(r, S, d)}

rer/

subjectto0=r;=--- =7, (3.2)

Note that releasing jobs in a different order implies a
different computation of completion times. Therefore
the above constraints 7, = - - - = r; mean that the order
in which jobs are released is fixed. Note also that the
cost function, and its expected value, depend on the
due datesd := (d,, ..., d;). Sometimes we suppress d
and write Z(r, S), etc.

Let us observe at this point that since the max-
operator preserves convexity, it follows that Cy; is a
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convex function of r and S and hence Z(r, S, d) is a
piecewise linear convex function Z : R’ X RY x R/ —
R. This implies that the expected value function g(r,
d) := E{Z(r, S, d)} is convex for any distribution of S.
Convexity is a very useful property in optimization.
We discuss its implications for the present problem
later.

3.3. Determination of Tardiness and
Cycle Time Cost

One problem with the above formulation (and, in-
deed, many formulations in this literature) is the
difficulty in determining the associated costs. Tardi-
ness cost and cycle time cost are not intuitive. In order
to understand this problem better, let us consider the
following procedure.

Suppose that the penalty costs L; and L} do not
depend onj, thatis L; = L' and L} = L for all j. Then
all we need to specify is the ratio of these costs, call it
X := L'/L* Then the objective becomes

] J
Z(r,S,d):==A X [Cqy—d]]" + 2 [(Cyy Od) — 1],

j=1 j=1

(3.3)

where again, we wish to minimize its expected value
subject to the ordering constraints.

Let us observe that in this case the optimization
problem (3.2) can be formulated in the following
equivalent form:

rer/

]
min [E[ > [(Cx Od) — T’j]}

j=1

= Ty,

]
subject to [E[ > [Cx — d]-]*] =T, 0=r=---
j=1

(3.4)

for some T > 0. Indeed

]

L(r, \) = [E{ S [(Cx; Od) — 7]

j=1

]
+)\(2 [Cx—dj]" — T)]

j=1
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is the Lagrangian of the above optimization problem.
For fixed A > 0, minimization of &( -, A), subject to 0
=r, = -+ =1y, is equivalent to solving optimization
problem (3.2). Let * be an optimal solution of (3.2),
i.e., r* is a minimizer of £( -, A) for A := L'/L? and
C%; be the corresponding completion times. Then r* is
also an optimal solution of (3.4) for

]
T:= [E[E [c;].—djr].

j=1

It also can be noted that, by convexity of (3.4) (see
§3.4), the optimal value of the above problem (3.4) is a
convex function of the right-hand-side perturbation
parameter T.

From the above discussion we see that specifying
costs for tardiness and cycle time (i.e., the ratio A
:= L'/L?) is equivalent to dealing with the trade-off
between those quantities. Suppose we plot a chart
depicting the optimal expected tardiness against the
optimal expected cycle time for different values of A.
By the above arguments, such chart will be the graph
of a convex monotone function. The planner can then
choose the values of expected tardiness and cycle time
in the graph that are better suited to his priorities. We
discuss this problem further in §8, where a numerical
example is presented.

3.4. The Performance Model
The completion times can be computed by the following
recursive formula (see, e.g., Hasan and Spearman 1996):
Cij = Ciq,, OCyjq + Sy,
j=1,...

T k=1,...,K, (3.5)

withCy =0,k=1,...,K,andCy; =71,j =1, ...,
J (see Figure 1). It is worthwhile to note that the cost
function can be also written in the following equiva-
lent form:

]
Z(r, S, d) = 2 {L}(C; Od; — d)) + LX(Cy; Od; — 1))}
j=1
]
= 2L} +LH(Cy Od) — L3, — L}
j=1

(3.6)
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Figure 1

Graph Representation of Completion Times

SkJ

K+1

It will be convenient to represent processing (flow)
of the jobs on the directed graph G given in Figure 1.
We view the top node, labeled 0, as the beginning of
the process, and the remaining nodes are labeled
according to their position (k, j). The service times S;
are viewed as distances between the corresponding
nodes. The length of a path from the node 0 to a node
(k, j) is given by the corresponding distance. For
example, we can reach the node (2, 2) by traveling
along the path 0 — (1, 1) — (1, 2) — (2, 2). The length
of that path is r; + S;; + Sy,. The following propo-
sition shows an equivalence between the longest paths
and completion times.

ProrosiTioN 3.1. Let Py; be the length of the longest
path from the node 0 to the node (k, j). Then, the following
relation holds:

Ck‘ = Pk] + Sk]

: (3.7)

Proor. We proceed by induction in k. Let us prove
initially that (3.7) holds for k = 1, i.e., for the first row.
For j = 1, clearly we have P,; = r; and hence (3.7)
holds. Now suppose (3.7) holds for j = 1. The longest
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path from node 0 to node (1, j + 1) is given by P, .,
= (Py; + Sy)) O7j.. By the hypothesis of induction on
j and (3.5), we have then P,;,, = Cy; Or;; = Cy 0y
— S,,+1, and hence (3.7) holds for j + 1.

Now suppose that (3.7) holds for rows 1, ..., k, for
some k = 1. We want to show that this relation also
holds for row k + 1. Indeed, consider first node
(k + 1, 1). There is only one path from node 0 to that
node, so we have P,,;; = P, + Sy. From the
induction hypothesis and (3.5) it follows that P;.,,
= Cj, = Cyy11 — Sii1y, hence (3.7) holds for (k + 1,
1). Next, suppose for induction that (3.7) holds for
nodes (k + 1, 1),..., (k + 1, ) for some j = 1, and
consider node (k + 1, j + 1). We have that

Pk+1,j+1 = (Pk,j+1 + Sk,j+1) O (Pk+1,j + Sk+1,j)/

so by the hypotheses of induction (on the rows and on
j) wehave Pyy ;11 = Cy ;11 OCyyy; and hence it follows
from (3.5) that Piy1;e1 = Crirjs1 — Skerje1r 50 (3.7)
holds for node (k + 1, j + 1), thus completing the
proof. [

In particular, it follows from (3.7) that the total
completion time of job j can be written in the form

CK/' = Pl<+1,j- (3~8)

Note also that the modified completion time Cy; 0 d;
can be easily computed through a longest path as well,
just by adding an arc connecting node 0 to node
(K + 1, j) with the corresponding distance d;. We
shall use henceforth the term “total completion time”
referring to Cy; 0 d; and Cy; interchangeably, the
meaning being understood from the context.

Besides allowing a graphical representation of the
completion times, the graph structure makes possible
the use of efficient and well-known algorithms. In the
present case the graph is acyclic, so we can use a
topological ordering type of algorithm to find the long-
est path (see, e.g., Ahuja et al. 1993). The idea is to
compute the longest path from the root node to all
other nodes in the graph following the intrinsic topo-
logical order, and visiting each edge only once. Be-
sides being simple and efficient, this kind of algorithm
allows all completion times to be computed simulta-
neously. Note also that longest path problems can be
written as linear programming problems (Ahuja et al.
1993). We describe that next.
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We can think of the longest-path between nodes 0
and (K + 1, j), as a maximum-cost flow between those
nodes, where each arc has capacity equal to one.
Consider the graph G depicted in Figure 1, augmented
with the arc (0, (K + 1, j)). We use the following
convention for the flow variables:

+ v,; denotes the flow on the arc connecting node 0
tonode (1,5),j=1,...,];

* vy denotes the flow on the arc connecting node (k,
j)tonode (k +1,j), k=1,..., K, j=1,...,];

e hy; denotes the flow on the arc connecting node (k,
j)tonode (k,j+ 1), k=1,...,K,j=1,...,] - 1;

+ u; denotes the flow on the arc connecting node 0
tonode (K +1,)),j=1,...,].

By vy := (@o, ..., 0g), © = (Ui, ..., Vg), h
= (hy, ..., hgyoy) and u 2= (uy, ..., u;) we denote
the corresponding vectors.

It follows then that for every I € {1, ..., J} the total
completion time Cy, 0 d, is given by the optimal value
of the following linear programming problem:

] ] K
max { 2 100 + > Si(vy + hyy) +duy g, (3.9)
woohu | j=1 =1 k=1
subject to
Uk-1j T hijo1 = vy + hyg,
k=1,..., K, j=1,...,], (3.10)
J
u+ 2 vy =1, (3.11)
j=1
U+ o =1, (3.12)
v=0, j=1,...,1-1,1+1,...,], (3.13)
O=vy=1, k=0,...,K,j=1,...,], (3.14)
0=hy=1,
k=1, , K, j=1, L] -1, (3.15)
O=u =1 (3.16)

A few words must be said about the above LP.
Equation (3.10) reflects the conservation of the flow on
nodes (k,j), k=1,...,K,j=1,...,]. Note that, by
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definition, hy, = 0 and hy; = 0, k = 1,..., K.
Equation (3.11) defines node 0 as the source of the flow,
whereas (3.12) and (3.13) define (K + 1, I) to be the
sink node. Finally, inequalities (3.14)-(3.16) are the
capacity constraints on all arcs. Note that those ine-
qualities can be replaced by vy;, hy, u;, € {0, 1}, since
there exists an optimal solution of such problem that is
integral (Ahuja et al. 1993).

3.5. Incorporating Failures into the Model

One source of randomness that often occurs in the
considered type of problems results from machine
failures. Breakdowns happen at random times, and the
necessary repair also takes uncertain time due to the
nature of the problem, availability of repairmen, etc.
In this section we discuss how to incorporate this
source of randomness into the model described in the
previous sections. For the sake of simplicity, we as-
sume that a broken machine starts to be repaired
immediately after it fails, that repair times are inde-
pendent from service times and failure epochs, and
that chances that a machine fails more than one time,
during service of a particular job, is negligible.

The basic idea is to “inflate” the service times by
mixing their distributions with the repair times distri-
butions, using the probability of failure as a weight.
Formally, let S;; be the service time of job j at station
k, and denote by R, the repair time of station k. Let
Ry, ..., Ry be iid random variables with the same
distribution as R,. Finally, let p;; be the probability
that station k fails given that job j is being served there,
and assume that this probability depends only on k
and j. The “inflated” service time S; is defined as

Skj = Skj + ijRkjr (317)

where Y; is a Bernoulli random variable taking value
1 with probability p;; and 0 with probability 1 — p;;.
Such inflated times S,; can be easily generated. To do
so, we generate Sy;, Y; and R,; independently according
to the respective distributions, and then compute S
as in Equation (3.17). Now, §; is taken to be the “new”
service time, that is, S,; replaces S, in the model
described above.

The probabilities p;; can be computed (or at least
estimated) if the times between failures of each station
are independent and exponentially distributed. In-
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deed, let F, be a random variable representing the
time between successive failures at station k. By the
memoryless property of the exponential distribution,
the distribution of the time until next failure from the
moment job j starts its service is still exponentially
distributed with the same parameter, so the probabil-
ity that station k fails before completing the service for
job j is given by p,; = P(Fy = Sj;). This probability can
sometimes be computed analytically, otherwise it can
be estimated by simulation.

4. Differentiability Properties of
the Expected Value Function

In this section we discuss differentiability properties
of the expected value function g(r) := E{Z(r, S)} (we
drop the parameter vector d in order to ease the
notation). Calculation (estimation) of the first, and
possibly second, order derivatives of g(r) is a starting
point of any efficient approach to the optimization
problem (3.2). Since the function g(r) is convex, we can
use powerful tools of convex analysis. Recall that a
vector v € R’ is said to be a subgradient of ¢(-), at a
point r, if for all r' € R’

g(r') —g(r)=o™(r' — 7).

The set of all subgradients of ¢ at r is called the
subdifferential of ¢ at r and denoted 9g(r). The real-
valued convex function g is differentiable at r if and
only if the set dg(r) is a singleton, i.e., contains only
one element. In the latter case this element (subgradi-
ent) coincides with the gradient of g at r (see Rocka-
fellar 1970, Theorem 25.1, for details). Note that a real
valued convex function is locally Lipschitz continu-
ous, which implies that the concepts of Gateaux and
Fréchet differentiability are equivalent for such func-
tions.

It is possible to show that

0g(r) = E{0Z(r, S)}, (4.1)

where the subdifferential inside the expected value in
(4.1) is taken with respect to r. The expected value
E{F(S)} of the set-valued mapping F(S) := dZ(r, S) is
understood as the set of points given by expectations
of measurable and integrable selections of F (see Ioffe

MANAGEMENT ScIENCE/Vol. 45, No. 1, January 1999

and Tihomirov 1979, §8.3; Rockafellar 1968, Rockafel-
lar and Wets 1982 for details and proofs). The required
regularity conditions for (4.1) to hold are very mild.
Apart from some measurability assumptions (which
certainly hold in the present case) it is required only
that the expected value function g(r) = E{Z(r, S)} be
finite valued.

An important consequence of (4.1) is that dg(r) is a
singleton if and only if 0Z(r, S) is a singleton for
almost every S (with respect to the probability mea-
sure of S). That is, g is differentiable at r if and only if
Z( -, S) is differentiable at r with probability one. In
the last case

Vg(r) = E{VZ(r, S)}, 4.2)

where the gradient VZ(r, S) is taken with respect to 7.
We show now that if the distribution of the random
vector S (of service times) has a density function, then
indeed Z( -, S) is differentiable with probability one,
and hence (4.2) holds at every point 7.

The following result, due to Danskin (1967), will be
useful in several respects. Consider a real valued
function ¢(x, y), x € R", y € R", aset C C R" and
the corresponding max-function ¢(x) := sup,ec

e(x, y).

THEOREM 4.1. Suppose that for all y € C the function
o( +, y) is differentiable, that ¢(x, y) and V,.¢(x, y) are
continuous on R" X C and that the set C is compact. Then
the max-function (x) := sup,ec @(x, y) is directionally
differentiable and its directional derivatives ' (x, d) are
given by

' (x, d) = max d'V,e(x, y), (4.3)
yECH ()
where C*(x) := arg max,ec @(x, y) is the set of

maximizers of ¢(x, + ) over C.

In particular the above theorem implies that if the
set C*(x) = {y} is a singleton, i.e.,, ¢(x, + ) has the
unique maximizer y over C, then the max-function y«(-)
is differentiable at x and

Vip(x) = Vee(x, 7).

Note that, under the assumptions of Theorem 4.1, the
max-function (-) is locally Lipschitz continuous, and
hence the concepts of Gateaux and Fréchet differen-
tiability are equivalent.

(4.4)

93



HOMEM-DE-MELLO, SHAPIRO, AND SPEARMAN
Finding Optimal Material Release Times

Consider now the linear program (3.9)—(3.16). The
optimal value of this LP gives the total completion

time ¢, := Cy, Ud, and can be viewed as the optimal
value function
l/jl(r/ S/ d) = max (P(T’, S/ d/ UO/ w, u)/ (45)

(vo,w,u)eC
where
o(r, S, d, vy, w, u) :=r"vy+ STw + d"u,

w := v + h, and C is the corresponding feasible set.
This feasible set C is defined by linear constraints,
obtained from (3.10)—(3.16) by the transformation
v + h — w, and hence is a convex polygon. Moreover,
it is not difficult to see that the set C is nonempty and,
because of the constraints (3.14)—(3.16), is bounded
and hence is compact. It follows then by Theorem 4.1
that the function s, defined in (4.5), is differentiable at
a point (r, S, d) if (and only if) the LP (3.9)—(3.16) has
a unique optimal solution (0,, w := v + h, i1) (that is,
if (0, 0, h, @) is an optimal solution of (3.9)—(3.16),
then @,, @ = 0 + h and ii are unique). In the last case

Vrl/jl(r/ S/ d) = Z_JOI (46)

and similarly for the gradients with respect to S and d.

Let us observe now that since C is a convex polygon,
the set of those vectors (v, S, d) for which the
corresponding LP has more than one optimal solution
is formed by the union of a finite number of affine
subspaces of the space R’ X RY X R’. In particular,
for any fixed r and d, the set &(r, d) of vectors S for
which the corresponding LP has more than one opti-
mal solution, is a union of a finite number of affine
subspaces of R". Since a proper affine subspace of a
finite dimensional vector space has Lebesgue measure
zero, we obtain that the set F(r, d) has Lebesgue
measure zero in R". (An affine subspace is said to be
proper if it does not coincide with the whole space.) It
follows that if the random vector S of the service times
has a probability density function (pdf), then for any r
and d the cost function Z( -, S, - ) is differentiable at
(r, d) for almost every S (with respect to the proba-
bility distribution of S). Consequently, in that case
formula (4.2) holds, i.e., the operator of differentiation
can be taken inside the expected value.
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Let us summarize the above discussion in the fol-
lowing proposition.

ProroSITION 4.1.  Suppose that the random vector S, of
service times, has a continuous distribution described by a
probability density function. Let P, be the set of arcs that
form the longest path from node 0 to node (K + 1, 1) on the
graph G U arc(0, (K + 1, 1)) with weights (distances) (r,
S, d). Then: (i) for any given r and d, the total completion
times Cy, U d,, I =1, ..., ], are differentiable at (r, d)
with probability one, and

dC, O d, [ 1, ifarc (0, (1,)) €P,
a—r]. (r, S, d) = { 0, otherwise,
4.7)
Tad, (r, S, d)
[ 1, ifj=landarc(0, (K+1,1)) €P,
~ | 0, otherwise. (4.8)

(ii) The expected values of these completion times, and hence
the expected value of the cost function, are differentiable
functions of r and d and the above partial derivatives can be
taken inside the expected value operator.

In particular, if the service times S,; are mutually
independent and each has a density function, then the
corresponding random vector S has a continuous
distribution with the corresponding pdf given by the
product of the pdfs of the S;;.

Now let S', ..., S" be a generated random sample
of N independent realizations of the service times
vector S. Then we can estimate the expected value
function g(r, d) := E{Z(r, S, d)} by the sample
average function

N
gn(r, d):=N"13 Z(r, S, d).

i=1

(4.9)

By the Law of Large Numbers, for any given r and d,
&n(r, d) converges with probability 1 to g(r, d) as N —
. That is, §y(, d) is a consistent estimator of g(r, d).
Moreover, we have by Proposition 4.1(ii) that Vg(r, d)
= E{VZ(r, S, d)}, provided S has a continuous
distribution. By the Law of Large Numbers this im-
plies that V§y(r, d) converges to Vg(r, d) with prob-
ability 1. Note the partial derivatives
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agn N
- (r,d)=N"" > (L} +LY
ar, — I J
i=1 j=1
9Cx; O d,

J i _ 72
arl (r/S/d) Ll

(4.10)
at those points where ¢y is differentiable, and simi-
larly for the partial derivatives with respect to d,.

5. Lower Bounds

Consider the expected values (means) wy := E{Sy}
and the corresponding vector w = (w11, ..., pgj). By
Jensen’s inequality it follows from convexity of Z(r, -,
d) that for any r and 4,

E{Z(r, S, d)} = Z(r, w, d). (5.1)

This implies that the optimal value of the problem
(3.2) is greater than or equal to the optimal value of

min Z(r, p, d) (5.2)

reR’

subjectto0 =r;=--- =7,

Let us show next that the optimization problem (5.2)
can be formulated as an LP problem.

Consider the graph in Figure 1 with weights r and
= S, and let R;; be the length of the longest path from
node (1, i) to node (K + 1, j). Define R; = —=
whenever such path does not exist, i.e. i > j. Clearly,
the length of the longest path from node 0 to node
(K + 1, j) is given by max,=-;{r; + R;}, and hence by
Proposition 3.1 we have that

Notice that the matrix R := [R;] is constant in the
sense that it does not depend on 7 and d, although it
depends on u. Now the right-hand side of (5.3) can be
written as the LP problem

minz; stz;=r,+Ry;i=1,...,j,z,=d;. (5.4)

Consequently, by using nonnegativity of the costs L},
L}, we obtain that problem (5.2) can be formulated in
the form
J J J
min{ >, (L} + L}z, — 2, Lir;— > L}d,
j=1 j=1

z,r

j=1
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subjecttoz;, —r, =Ry, i=1, ...

Jii=1],
z—d;=0,j=1,...,],

=0,j=1,...,]—1,

(5.5)

The above LP problem (5.5) can be solved relatively
easily. Its optimal value gives a lower bound for the
optimal value of the original problem (3.2) and corre-
sponds to the situation where the service times are
replaced by their means.

Another lower bound can be constructed as follows.
Let S', ..., S" be a generated random sample of the
service times vector S. For each S’ consider the asso-
ciated problem

min Z(r, S', d)

rer/

subjectto0=r,=---=r. (5.6)
By the above arguments problem (5.6) can be formu-
lated as an LP problem in a way similar to (5.5) (by
replacing the weights . with S’), and hence its optimal
value Z7 can be easily calculated. By the Law of Large
Numbers we have then that Z, := N ' IV, z*
converges with probability one to E{min,eq Z(r, S,
d)}, where R := {re R :0=r, =---=r}. Letus
observe now that for any » € R,
E{Z(r, S, d)} = E{min Z(r, S, d)},

reR
and hence

min E{Z(r, S, d)} = E{min Z(r, S, d)}.

reR reR

(5.7)

We have here that the right-hand side of (5.7) gives a
lower bound for the optimal value of problem (3.2)
and that Z, is a consistent estimator of that lower
bound.
We also have the following inequality relation be-
tween the above two bounds:
E{min Z(r, S, d)} = min Z(r, w, d).

reR reR

(5.8)

Indeed, since the function Z( -, -, - ) and the set R are
convey, it follows that the function {(S, d) := min,y
Z(r, S, d) is also convex. Inequality (5.8) is then a
consequence of Jensen’s inequality.
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6. Numerical Methods

There are basically two approaches to a numerical
solution of the problem (3.2) by using Monte Carlo
estimators (4.9) and (4.10) of the value g(r) and the
gradient Vg(r), respectively, of the expected value
function at a point r. One approach is based on the
stochastic approximation (SA) method (see, e.g.,
Kushner and Clark 1978). The SA method generates
iterates by the following procedure:

rkt = Hm(”k — ayyy, (6.1)

where v, is an estimate of the gradient Vg(r"), a; is a
chosen sequence of positive numbers and II; denotes
the projection operator onto the feasible set %R. For
example one can use the estimate y, := V¢ (r"), given
in (4.10), for a generated sample. The numbers (step-
sizes) a, typically are chosen a priori, and one has little
control over a; in the process of optimization.

In this paper we discuss a variant of an alternative
approach, which became known as a stochastic coun-
terpart or sample path method (cf. Rubinstein and
Shapiro 1993; Plambeck et al. 1993, 1996). The basic
idea of the method is simple indeed. A large sample is
generated and then the corresponding sample average
function ¢y(r), given in (4.9), is minimized by deter-
ministic methods of nonlinear programming. Of
course, an implementation of that idea requires spec-
ification of a particular algorithm which is used for
minimization of ¢y(r). Typically calculations of the
value ¢\(r") and its gradient V¢,(r") of the sample
average function, at a current iteration point v, are
time consuming and their computational time is pro-
portional to the size N of the generated sample. In the
beginning of the process, when the iterates are far
away from the optimum, it does not make sense to
generate a large sample since there even a relatively
small sample allows to make a significant progress.
Eventually the sample size should be increased in the
process of optimization in order to obtain a better
accuracy of the final estimate of the optimal solution
(cf. Shapiro and Homem-de-Mello 1998).

We now proceed to the description of the algorithm.
In order to ease the understanding, we outline it in
blocks, which will be described later in detail.
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1. Choose a (small) sample size N = N, and initial
value r' of the vector of release times.

2. For a current iterate k, generate a sample, of size
N = N,, of service times vectors S*, ..., SV, and
compute the estimators ¢,(r") and V¢y(r") ac-
cording to (4.9) and (4.10), respectively.

3. Compute a descent direction 8, by projecting the
estimator V¢ ,(r") onto an appropriate space and
compute a stepsize «; by a (crude) line search.

4. Set r*' := r* + a;8, and compute ¢, (r*"") and
V¢ n(r") using the same sample S', ..., S™.

5. If the decrease ¢,(r) — gn(r*") is significantly
large, then go back to Step 3 with k — k + 1 and

1. Otherwise, generate a new sample

S', ..., 5V and compute new estimators g ("),

rF =7

VgN(i’kH).
6. Compute new appropriate sample size N, and
extend sample to S§', ..., §™, SN0, SV

k+l).

Compute §y,..(r"), V.. (r

7. Test statistical stopping criteria based on the

difference ¢,(r") — &x...(r""") and on the estima-
tor Vg ne (P51 If none of them is satisfied, go to
Step3withk >k + 1, ¥ = " and N, = Ny,.
Otherwise, STOP.
Following the above outline, we now proceed to the
detailed description of each step.

STEP 1. The initial sample size should be small
enough in order to accelerate the first iterations. In our
implementation we take N = 50. The initial release
times can be set arbitrarily. A “good” initial guess can
be obtained by setting the release times as the optimal
solution of the problem (5.2). Recall that the optimal
value of (5.2) provides a lower bound for the optimal
value of the problem (3.2).

STEP 2. For each S', solve the longest-path problem
for the graph with weights (", S', d) using a topolog-
ical ordering algorithm (see the discussion in §3.4).
Recall that all terms C; as well as the corresponding
derivatives can be computed simultaneously.

STEP 3. The stepsize can be computed by using any
first-order optimization algorithm. In our case, we
project the estimator V¢ (r") onto the null space of the
matrix corresponding to the constraints {r; = 7,4, r,
= 0} that are active at r*, and then apply a line search
to find the stepsize, using Armijo’s algorithm. See,
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e.g., Bazaraa et al. (1993) for a detailed description of
this method. The choice for a projection algorithm was
driven mainly by the simplicity of the constraints and
by the fact that in many cases the constraints are never
active during the iterations of the algorithm.

STEP 4. The computation is analogous to Step 2, but
now the corresponding graph i has weights (r*"!, S,
d). Observe that one could compute the completion
times by constructing for each S’ a matrix R’ similar to
the one used in Step 1 (i.e., depending only on the
weights S'). In this case, the computation of the
completion times for r**' would be extremely fast,
since the matrices R’ would not have to be computed
again. The price, of course, is the computation (J*
longest-paths) and storage of all matrices R'. This
seems to be impractical in situations where the num-
ber of jobs is large, so we adopt the same procedure as
in Step 2.

STEP 5. The significance of the decrease in the value
of the function ¢ y(-) is measured by a statistical paired
t-test (see Shapiro and Homem-de-Mello 1998 for
details).

STEP 6. Two tests are performed in order to deter-
mine the new sample size. The first one calculates the
sample variance 63 of ¢(r*"") and verifies the condi-
tion

on 5 (pk+1
Zas2 —s < BEN(rTT) (6.2)
VN
for some prespecified B. If the above condition holds,
the current sample size is kept. Otherwise, we want to
choose the new sample size N such that

A

ON
Za/Z 7 < BgN(rk+1)/
g

and hence we can take

A 2
Za/20N D
N’ ,

TR BT

where [a[1denotes the integer part of a.

The second test aims to guarantee (up to some
specified confidence) that the estimator V¢ (r*"") will
indeed yield a descent direction for the original prob-
lem. To do so, a confidence region

MANAGEMENT ScIENCE/Vol. 45, No. 1, January 1999

R={z€R/: (z - Ve )3y (z — Ven(r*)
= xj(a)/N}

(where 3 is the sample covariance matrix) is com-
puted, and it is imposed that every vector in that
confidence region make a nonnegative scalar product
with V¢, (r*""). In either of the tests, the correction
factor is limited to four times. We again refer to
Shapiro and Homem-de-Mello (1998) for a more de-
tailed description of the test.

STEP 7. The reduction in the value of the function is
again verified by a statistical t-test (note that here the
estimates ¢,(r") and §y,..(r*"") are independent).

The second stopping criterion measures the quality
of the current solution **' by computing the distance
from the gradient estimator Vg,.,(r""") to the optimal
cone corresponding to the set of points which satisfy
the Karush-Kuhn-Tucker optimality conditions. The
conditions for the applicability of such test as well as
its detailed description can be found in Shapiro and
Homem-de-Mello (1998). Let a; denote the ith row of
the matrix corresponding to the constraints r,,, — 7;
=0(.ea=(0,...,0,—-1,1,0,...,0)), and let I(r)
denote the set of active constraints at r, that is,

I(T) = {j N 1’]= r]'+1, 1 S]'S]_ 1}.
Let N = N,.;, and consider the statistic

T := min(Vy(r*)) — 2) "S5 (Ven(ri) — 2),

zeC
where 2 is the sample estimator of the covariance

matrix of V§(r*""), and C is the cone

> A, =0, i €I(rF L.

i€l(rk+l)

C:=lzeR/:z=

It is known that under mild regularity conditions, the
null distribution of T (i.e., the distribution of T under
the null hypothesis: “r**! is an optimal solution”) is a
central chi-square with | — p degrees of freedom,
where p is the number of active constraints at r**'
(Shapiro and Homem-de-Mello 1998). Hence, given a
prespecified significance level «, we compute ¢ such

that
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Prob{x}.,=c} = a,

and hence accept the optimality of r**" if T =< c.

7. Sensitivity Analysis

In optimization problems, one often faces the question
of how much an obtained solution would change if
some input data were slightly perturbed. In the
present context of optimization of release times that
situation may arise, for example, if the due date of
some job is either postponed or anticipated because of
a re-order from the client. It also could happen that
one is interested in analyzing whether it is worthwhile
improving the capacity of one or more stations in
terms of reduction of tardiness and cycle-times of jobs.
That is, what would be an effect of changing some
parameter of the distribution of service times in the
objective function previously computed? Such ques-
tions amount to studying the derivatives of the opti-
mum value function and the optimal solutions with
respect to the desired parameters, using the tools
provided by the theory of sensitivity analysis.

The approach used in this work to solve the original
optimization problem (3.2) also allows a computation
of these derivatives under some conditions. Suppose
initially that we want to compute the sensitivity of the
optimal value of the problem (3.2) with respect to the
due-dates d. Consider the associated optimal value
function

v(d) := min g(r, d).

reR

(7.1)

Let us first observe that the function v(d) is convex.
This follows at once from convexity of g( +, - ) and
convexity of . Second, suppose that the problem (3.2)
has a unique optimal solution r*. Since the problem
(3.2) is convex, this holds if the function g( -, d) is
strictly convex. Then by Theorem 4.1 we have that v (-)
is differentiable and

ov(d) ag(r*,d)
= , 7=1,

T ad (72

The partial derivatives in the right-hand side of (7.2)
can be estimated from the generated sample S', ...,
S" by using formula (4.8). That is, if 7 is an estimate of
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r* (obtained by solving (3.2)), then a¢ (7, d)/ dd; gives
an estimate of dv(d)/ad;, j = 1,..., ]J. In a similar
way, one can estimate derivatives of the optimal value
of (3.2) with respect to parameters involved in the
distributions of the service times Sj;.

Note that the sensitivities with respect to due dates
provide useful information about the probability of
tardiness. Indeed, from (3.6), (4.8), and (4.9) it follows
that

agn(t, d)
od,

]

N*l

N
> (L} +LY
i=1

ad;

]

(+,5', d) —L}]

N

= N‘l{ E (L]l + L]z)l{CK,'(?)Sd]} - L]l] 7
i=1

and hence by the Strong Law of Large Numbers we

have that

L} + av(d)/od;
Li+L7

= P(Cy(?) = d))

=1 — P(jobj is tardy | release times = 7). (7.3)

The above computations allow to estimate the
change in the optimum value of (3.2) when certain
parameters are perturbed. A more complicated issue
concerns the sensitivity of the optimal solution of that
problem with respect to the same parameters. That is,
one may ask how the optimal solution r* varies as the
input data changes. It is possible to show that if r* is
unique and is an interior point of R, then

Vri(d) = —[Vig(r*, &)1 '(Vig(r*, d)).

(see Fiacco 1983 for details). An application of the
above formula requires calculation (estimation) of the
second order derivatives of g(r, d), which may be not
easy. This problem requires a further investigation.

(7.4)

8. Numerical Results
In this section we present some numerical results
obtained with an implementation of the algorithm
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Table 1 Process Times and Mean Times to Failure and Repair for

Example Problem

Process Times

(Min.)
Mean Time to  Mean Time to  Probability
Station Mean  Std Dev  Failure (Hours)  Repair (Hours)  of Failure
1 20 1 5 2 0.0645
2 25 25 16 2 0.0257
3 24 1.5 25 1 0.1478
4 16 1.5 9 2 0.0292
5 20 45

described in §6, applied to the example problem
discussed in §3.1. Consider a line with 5 processing
stations (each one corresponding to one operation of
the core circuitize process) and 25 jobs, and suppose
the planning is made at the beginning of the day. The
first 10 jobs are due at the end of that day (8 hours),
and the remaining 15 jobs are due at the end of the
next day (16 hours). The data for the stations are given
in Table 1. The distribution of service times is assumed
to be normal, whereas the time to failure and the time
of repair are assumed to be exponentially distributed.
The last column displays the approximate probability
of failure of each station.

These data were used with values for the ratio A
:= L'/L? (see §3.2) ranging from 0.1 to 1000. For each
of six chosen values for A (0.1, 0.5, 1, 10, 100, 1000) we
ran the program to compute the optimal solution. The
full line curve on Figure 2 shows the relation between
the corresponding expected tardiness and expected
cycle time per job. Observe the convexity of the graph,
which was expected in light of the remarks made in
§3.2. The chart can help the planner to decide which
value of A is appropriate for the case under study,
based on the relative importance of tardiness and
cycle time attributed by the user. For example, if the
planner chose the point corresponding to an expected
cycle time of around 300 and tardiness of around 125
as a reasonable trade-off level, the value of A to use
would be 1.0.

For the sake of comparison of the release policy
suggested by our method with other policies, we
considered the case when jobs are released according
to fixed lead-times (see §1). In that policy, given a value
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of a parameter [, job j is released at time [d;, — I]",
where d; is the due date of that job. The dashed-and-
dotted line in the graph shows the expected tardiness
and expected cycle time computed for values of [
equal to 120, 240, 480, 600, 720, and 960 (in minutes).
That curve (of the lead-time policy) is also the graph of
a convex function. In order to see that, consider the
constrained problem (3.4) where the optimization now
is performed with respect to the lead time /. For a
given lead-time [, let T be the corresponding expected
tardiness. Then, since the expected cycle time is a
monotonically increasing function of ! and the ex-
pected tardiness is a monotonically decreasing func-
tion of I, we obtain that the constraint of the consid-
ered optimization problem is active at the optimal
solution I*, i.e., the expected tardiness is equal T for
I = I*. Tt follows that [ = I*, i.e., for that choice of T,
1 is the optimal solution. Since the functions [d =17
are linear in [ on the interval (0, min;{d;}), the convex-
ity of the curve of the lead-time policy on that interval
follows. With some additional effort it is possible to
show that the above convexity holds on the larger
interval (0, max;{d;}) as well.

Clearly, the curve obtained with lead-times is al-
ways above the curve given by the optimal solution
with arbitrary release times. In other words, given the
release times corresponding to some value of [ there
exists a different set of release times that yields less

Figure 2 Expected Tardiness vs. Expected Cycle Time

350 T T T T

tardiness

0 L L L L L L
200 300 400 500 600 700 800 900

cycle time
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Table 2 Output of the Algorithm
Iter. Gulr A T p-Value N New
1 10376.90 1284.72 Inf 0.00 50 *
2 12028.52 848.97 Inf 0.00 200 *
3 11750.88 832.37 Inf 200
4 11478.12 792.98 Inf 200
5 11341.37 769.28 Inf 200
6 11237.04 742.30 Inf 200
7 11119.22 729.78 328.56 200
8 11045.54 696.98 Inf 200
9 10986.39 691.41 8.10 200
10 10935.73 681.11 80.61 200
1 10906.81 671.74 4.91 200
12 10898.20 671.33 63.56 200
13 10612.28 326.79 3.85 1.00 800 *

expected tardiness and less expected cycle time than
the ones given by that lead-time.

The third curve plotted on Figure 2 (the dashed line)
depicts the expected tardiness and expected cycle time
corresponding to the release times obtained by solving
the deterministic problem in which all random vari-
ables are replaced by their means. As seen in §5, that
solution can be obtained by solving a Linear Program-
ming problem. The graph illustrates the advantage of
using the stochastic optimization approach over that
“naive” method: for small values of A (i.e., bigger
weight on cycle time), the solution provided by our
technique yields less expected cycle time than the
solution obtained with means; as A gets large (ie.,
tardiness becomes more important) the optimal “sto-
chastic” solution results in less expected tardiness
than the one with deterministic approach. Inciden-
tally, we can also infer from the graph that, for this
example problem, the deterministic approach gives
better results than the lead-times policy.

We illustrate the algorithm by showing the results
obtained for A = 1.0. Table 2 shows, for each iteration
k: the value of the estimator ¢ (r"), the half-size A of a
95% confidence interval for g(r"), the value of the
statistic T described in §6 with the respective p-value
and the sample size used. The last column displays an
asterisk for all iterations in which a new sample was
generated. Note that the p-value is not displayed for
the iterations without new sample, since the lack of
independence between the iterates invalidates the test.
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A few words about these results. Observe that the
sample size used in the first iteration (50) was actually
too small, resulting in a poor estimation of the value of
the function, which is reflected in the large confidence
interval obtained in that iteration. The use of a bigger
sample (from the second iteration on) corrected the
problem, therefore causing an apparent “worsening”
in the value of the function. Note also that the stop-
ping of the program was determined by the p-value
computed on iteration 13 (see §6). The obtained p-
value (1.0) indicates that the corresponding solution
can be accepted as optimal (i.e., the hypothesis “r" is
optimal” is not rejected) with a level of significance
approximately equal to one, which is a strong evi-
dence of optimality. It must be said, however, that
such situation is not typical, and in fact in some other
problems for which we tested the method the stop-
ping of the program was determined by the detection
of insignificance in the reduction of the value of the
objective function rather than by the corresponding
p-value.

We also computed the lower bounds described in
§5. The first one, suggested by Jensen’s inequality
(5.1), was obtained by replacing the service times with
their means, and then by solving the corresponding
LP problem (5.5). The resulting value was 6012. Note
that this value is significantly smaller than the corre-
sponding minimum of the expected value function,
which is estimated as 10612 (see Table 2). This again
illustrates the difference between solving the stochas-
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Table 3 Optimal Release Times (in minutes) and Tardiness
Probabilities

Job Release Time Due Date Probability of Tardiness
1 10 480 0.02
2 39 480 0.04
3 93 480 0.06
4 183 480 0.11
5 205 480 0.18
6 234 480 0.24
7 305 480 0.38
8 342 480 0.58
9 379 480 0.93
10 412 480 1.00
11 508 960 0.08
12 524 960 0.11
13 596 960 0.15
14 658 960 0.21
15 712 960 0.30
16 743 960 0.38
17 792 960 0.47
18 822 960 0.62
19 858 960 0.96
20 899 960 1.00
21 947 960 1.00
22 983 960 1.00
23 1051 960 1.00
24 1100 960 1.00
25 1154 960 1.00

tic problem (3.2) and solving its deterministic counter-
part (5.2). The second bound was computed by solv-
ing the optimization problem (5.6) for each sample
path, and then by averaging the solutions (see (5.7)).
The obtained value was 8255, with a half-size of a 95%
confidence interval equal to 442 (a sample of size 200
was used). Observe that inequality (5.8) is verified
here.

Table 3 shows the optimal release times together
with the respective due dates and tardiness probabil-
ities computed by (7.3). The time unit is a minute.

9. Conclusions

The model presented here represents a first step in
using simulation-based optimization for production
scheduling. Although the computations are intensive,
the advent of manufacturing execution systems has
made the data required and the platform needed for
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real-time execution a reality. This paper has demon-
strated the feasibility of using simulation-based opti-
mization for a small manufacturing example. Further
research is needed to make this a reality for actual
industrial instances.'
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